Statistical analysis of domains in interacting protein pairs
نویسندگان
چکیده
MOTIVATION Several methods have recently been developed to analyse large-scale sets of physical interactions between proteins in terms of physical contacts between the constituent domains, often with a view to predicting new pairwise interactions. Our aim is to combine genomic interaction data, in which domain-domain contacts are not explicitly reported, with the domain-level structure of individual proteins, in order to learn about the structure of interacting protein pairs. Our approach is driven by the need to assess the evidence for physical contacts between domains in a statistically rigorous way. RESULTS We develop a statistical approach that assigns p-values to pairs of domain superfamilies, measuring the strength of evidence within a set of protein interactions that domains from these superfamilies form contacts. A set of p-values is calculated for SCOP superfamily pairs, based on a pooled data set of interactions from yeast. These p-values can be used to predict which domains come into contact in an interacting protein pair. This predictive scheme is tested against protein complexes in the Protein Quaternary Structure (PQS) database, and is used to predict domain-domain contacts within 705 interacting protein pairs taken from our pooled data set.
منابع مشابه
Discovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملLarge scale statistical prediction of protein-protein interaction by potentially interacting domain (PID) pair.
Protein-protein interaction plays a critical role in biological processes. The identification of interacting proteins by computational methods can provide new leads in functional studies of uncharacterized proteins without performing extensive experiments. We developed a database for the potentially interacting domain pairs (PID) extracted from a dataset of experimentally identified interacting...
متن کاملProtein Interaction Prediction Using Inferred Domain Interactions and Biologically-Significant Negative Dataset
Protein domains are evolutionarily-conserved structural or functional subunits in proteins that are suggestive of the proteins’ propensity to interact or form a stable complex. In this paper, we propose a novel domain-based probabilistic classification method to predict protein-protein interactions. Our method learns the interacting probabilities of domain pairs based on domain pairing informat...
متن کاملBiological units and their effect upon the properties and prediction of protein-protein interactions.
Structural data as collated in the Protein Data Bank (PDB) have been widely applied in the study and prediction of protein-protein interactions. However, since the basic PDB Entries contain only the contents of the asymmetric unit rather than the biological unit, some key interactions may be missed by analysing only the PDB Entry. A total of 69,054 SCOP (Structural Classification of Proteins) d...
متن کاملThe Origins of Specificity in Polyketide Synthase Protein Interactions
Polyketides, a diverse group of heteropolymers with antibiotic and antitumor properties, are assembled in bacteria by multiprotein chains of modular polyketide synthase (PKS) proteins. Specific protein-protein interactions determine the order of proteins within a multiprotein chain, and thereby the order in which chemically distinct monomers are added to the growing polyketide product. Here we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2005